
NASA/CR-2002-211655

ICASE Report No. 2002-15

Covolume-based Intergrid Transfer Operator in P1
Nonconforming Multigrid Method

Kab Seok Kang

ICASE, Hampton, Virginia

ICASE

NASA Langley Research Center

Hampton, Virginia

Operated by Universities Space Research Association

Prepared for Langley Research Center
under Contract NAS !-97046

May 2002



Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, M D 21076-1320

t301 _621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield. VA 22 !61-217 I

1703_ 487-4650



COVOLUME-BASED INTERGRID TRANSFER OPERATOR IN P1 NONCONFORMING

MULTIGRID METHOD

KAB SEOK KANG"

Abstract. In this paper, we introduce an intergrid transfer operator which is based on the covolume

of nodes in a P1 nonconforming multigrid method and study the convergence behavior of the multigrid

method with this intergrid transfer operator. This intergrid transfer operator needs fewer computations and

neighborhood node values than previous operators, which is a good property for parallelization. The P1

nonconforming multigrid method with this intergrid transfer operator is suitable for solving problems with

Robin boundary conditions and nonlinear problems with bound constraints on solutions.

Key words, multigrid method, covolume method, nonconforming finite elements, elliptic equations

Subject classification. Applied and Numerical Mathematics

1. Introduction. Multigrid methods are well known as efficient solution techniques for many prob-

lems including elliptic and hyperbolic partial differential equations, nonlinear problem, and even systems

of algebraic equations that are not derived from the spatial discretization of a partial differential equation

([5, 10, 14, 17]). Because nonconforming finite element or covolume methods have proven flexible and effec-

tive on incompressible fluid flow problems and biharmonic and plate problems ([9, 8, 11]) many researchers

have been interested in studying multigrid methods for nonconforming finite elements or covolume methods

([6, 7, 2, 4, 1, 12]).

In nonconforming multigrid methods, the intergrid transfer operators have important roles in conver-

gence. In this paper, we consider a covolume-based intergrid transfer operator. This intergrid transfer

operator needs less computation and neighborhood node information than previously proposed intergrid

transfer operators. The P1 nonconforming multigrid method with previous intergrid transfer operators is

less suitable for solving nonlinear problems that have bounds on solutions and has poor error reduction

for problems with Robin boundary conditions. However the P1 nonconforming multigrid method with this

intergrid transfer operator is very suitable for such problems.

Many authors have shown that nonconforming W-cycle multigrid methods converge and nonconforming

variable V-cycle multigrid preconditioners have a uniform condition number as preconditioners. In this

paper, we investigate the convergence behavior of W-cycle multigrid methods and the condition number as

preconditioners of V-cycle multigrid methods with covolume-based intergrid transfer operators, by means of

numerical experiments.

This paper is organized as follows. In section 2, we summarize some results of P1 nonconforming finite

element and covolume methods. In section 3, we introduce the covolume-based intergrid transfer operator

and recount the abstract theory developed by Bramble et al. for nonnested multigrid methods. In section

4, we report the results of numerical experiments justifying the convergence theory presented in section 3

and applied to a Radiation Transport problem which is a system of coupled nonlinear partial differential

equations with discontinuous diffusion coefficients.
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research was partially supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-
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2. Model problem and its discretizations. We consider the second-order elliptic problem with

Robin boundary conditions

-V - AVu = f, in f_,

/_u + A Ou
0u = g' on 0f_,

(2.2.1)

where t]E It_2 is a bounded polygonal domain with boundary Ol_, f E L2(ft), g E L2(O[_), and the symmetric

coefficient matrix A E (L'X (f_)) 2×2 satisfies

aoXtX __ xtA(x,y)x <_ alXtX, (x,y) • _, X E _2, (2.2.2)

with fixed constants a0, al > 0. It is well known that if 13 is not equal to zero on some set of boundary

which is not of measure zero, then equation (2.2.1) has a unique solution.

Let HS(f_) and L2(f_) be the usual Sobolev spaces with norm and seininorm

[Iv[[_ = Z [D%l'2dx , [v[_ = Z ]D%12dx ,

Ic_t<_s t_l=s

where s is a nonnegative integer. Let (., .) denote the L2(f_) inner product. As usual, the L2(f_) norm is

indicated by H" [10.

The variational form of (2.2.1) can be written as follows: Find u • H 1(fl) such that

a(u, v) = (f, v) + (g, v)o_, Vv • H l(f_), (2.2.3)

where a(v, w) = (AVe, Vw) + 03v, w)on, for all v, w, • H 1 (f_).

Let h0 and 7ho -- To be given, where To is a partition of f_ into triangles and ho is the maximum diameter

of the elements of To. For each integer 1 _< k _< J, let hk = 2-kh0 and the sequence of triangulations

Th_ - 7_ be constructed by the nested-mesh subdivision method, i.e., let 7_ be constructed by connecting

the midpoints of the edges of the triangles in Tk-1, and let 7h - 7) be the finest grid.

Define the Pl-nonconforming finite element spaces

I')_ = {v E L'_(f_) :vlK is linear for all K • 7_,

v is continuous at the midpoints of interior edges}.

In Pl-nonconforming finite elements, the node points are the midpoints of the edges. Obviously, this results

in

Define the bilinear forms over the spaces V_, for each k, as follows:

,_k(v,.,,O= y_ (Aw, w,)_: + (,-,,,-,,)on, Vv,_ • _<,
KET_

where (-, ")K is the (L_(K)) ","inner product.. Moreover, define the discrete energy norms as follows:

IMI_J, = ak(v,v) _/_, Vv • Uk.
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FIG. 1. Primal and Dual element

Then the nonconforming finite element discretization equation of(2.2.3)canbe written as: Find Uh E I_

such that

ah(uh,Vh) = (LVh) + (g, Vh)o_, Vh e I_. (2.2.4)

From a previous study of P1 nonconforming finite element methods [9], we have

I1_'- _,hllo + hllu - '_hll_,k < Ch_lul2 (2.2.5)

if u e H2(f_).

To define a covolurne of nodes, we construct the dual partitions Tk*. Divide each triangle of the primal

partition into three sub-triangles by connecting two vertices and the barycenter of a primal element as in

Figure l(a). As in Figure l(b), the dual element based at the node/='1 (covolume of/='1) is made up of the two

triangles AA1C1A2 and AA1C2A_. We do the obvious modification at a boundary node. Carrying out the

construction for every node in the primal partition, we obtain a dual partition for the donmin. We denote

the covolume of node P as K_, and the dual partition as Tk* = UK_,. Define the associated test. function

spaces }_ as the space of piecewise constant functions:

Yk = {Z E L2(Q) : ZIK7, is a constant vector}.

Obviously, we have

Define an operator from the spaces l,_ x Yk, for each k, as follows,

N_ fo _ Ouh " fo_--_nVhaa + _UhVhdaa* (uh, Vh) = -- __, 1,'7 \OK;_non n
i=1 i i

= - E Vh(Pi) t_--_naa + _UhVhda,
i=1 K_i \OK_i ClOUt

0_h is the outer normal derivative of uh.where

The covolume discretization equation of (2.2.1) can be written as: Find u_ E I/)_ such that

a*h(U*h,Vh) = (f, vh) "4-(g,l'h)O_, VVh _- Yh.

(2.2.6)

(2.2.7)
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FIG. 2. Covolume of coarse and fine grid

%Ve introduce one-to-one transfer operator % from Vk -+ Yk by

Nk

7kVh(X)=_'h(PJ)xi(X),
j=l

Vx E _, (2.2.8)

where _j'* is a characteristic function associated with the dual element Kp,,* j = 1, ... , Nk.

If we assume that A is piecewise constant, then we have the following relation

ak(Uh,Vh) = a_(Uh, TkVh), VUh,Vh E 1_ (2.2.9)

from [8].

We have the following convergence estimate from [8] and [11]:

flu - u_]ll,k _ Ch(llull2 + 1),

II_- uT,tlo _ Ch2(llull3 + 1),

if u E H2(Ft),
(2.2.10)

if u E Ha(l)).

In the case where A is piecewise constant, the finite element mett,od and the covolume method differ

only in the source term (right-hand side of equation). Therefore, in the next section, we consider only the

discretization of the linear problem induced by the finite element method.

3. Multigrid method and covolume-based intergrid transfer operator. In this section, we

introduce a covolume-based intergrid transfer operator and abstract theories developed by Bramble et al.

for non-nested multigrid algorithms.

The covolume-based intergrid transfer operators Ik : Vk-1 -+ I4 for k = 1,... , J are defined by

N__ l

Ikv(P) = Z v(Pi)lK_, A K_,I/]K_t, (3.3.1)
i=l

where P is a node point of 7_ and [A I is the area of A.



REMARK 3.1. We consider Figure 2 as art example. Then

V(Pl) + v(P11), and (It.v)(Pl) = v(P/).
(Ik v)(P._,)= 2

Compared to other intergrid t,'ansfl_r operators in [2](1[) and [11](I[.t),

1 {v(Plt) +(I/_v)(p_) = ,:(p/) + _ v(P,,,)- v(p,v) -v(pv)}

{v(P,,+
1

(I['v)(P1) = v(P,) + _ v(P,H)},

this operator needs less computation to compute values of nodes that are located in edges of the coarse grid.

REMARK 3.2. The intergrid transfer operator proposed in [2] cannot be employed in some nonlinear

problems that have a restricted range of solution values and rapidly changing fields, such as the Marshak

wave problem m radiation transport. If values of the solution are everywhere positive and v( PI ) v( PH ) and

v(PIH) are small and v(P1v) and v(Pv) are big, then (I_v)(P1) is negative.

Let Ak : %_ --+ 1.')_be the discretization operator on level k given by

(Akv, W)k = ak(v,w), Vv, w 6 1.'_.

The operator Ak is clearly symmetric (in both the ak(',') and (., .) inner products) and positive definite.

Pk-1 "Also, we define the operators 0 t'_ _ l_-1 and Pk-1 : _'_ --_ _k-1 by

= P__lw), Vv E Vk_l,Vw E 1..}¢,(Ikv, w) (v, o

and

ak-1 (Pt.-lw, v) = ak(u,, Ikv), VV E I")¢-L,Vw E I'9_.

It is easy to see that IkPk-1 is a symmetric operator with respect to the ak fi)rm. Note that. neither F°_l

nor Pk-1 is a projection in the nonconforming case.

REMARK 3.3. Because, for a coarse triangulation node P, K* fq K_, = O except for six covolumes Kp,P,

maximally m a fine triangulation, the number of fine triangulation nodal values which need to calculate P°_ 1

is less than six and this is less than the number of required fine triangulation nodal values in the intergrid

transfer operator previously proposed in [2], [12]. As art example, we consider Figure 2. The transfer operator

which was proposed in [2] requires the values of P1,... , P14 ; and the transfer operator which was proposed in

[11] requires the values of Pl,... , 1'1o to compute the value of P. But the transfer operator (3.3.1) needs only

• . P_-I, we need nodal values to calculate multiplicationP1,. ,P6. Because, in the computation of Ik and o

by the matrix Ak, this property is good for parallelization when the domain is partitioned by cutting edges

between vertices and to preserve covolumes, so each vertex is uniquely owned.

Finally, let Rk : I/_ --+ t'_ for k = 1,... , J be the linear smoothing operators, let R_' denote the adjoint

of Rk with respect to the (., .) inner product, and define

{Rk, I odd,Rkl)= R/, leven.

Following [3], the multigrid operator Bk : I,_ --+ 1/_ is defined recursively as follows.

Multigrid Algorithm 3.1. Let 1 < k <_ J and p be a positive integer. Set B0 = Ao 1. Assume that

Bk-1 has been defined and define Bkg for g 6 I'_ by



(1) Setx ° =0and q0 =0.

(2) Define x t fl_r 1 = 1 ..... re(k) by

x t = x t-I + R_t+m(k))(g _ Akxl-1).

(3) Define ym(kl = x.,Ikl + ikqP where qi for i = 1 .... ,p is defined by

qi = qi-I + Bt.-l [P°_ 1 (g - Akx re(k)) - Ak-1 qi-1].

(4) Define yt for I = re(k) + 1,... ,2re(k) by

yt = yt-1 + R[t+-_(k))(g _ Akyt-l).

(5) Set Bkg = y2,,,(k).

In Multigrid algorithm 2.1, re(k) gives the number of pr_ and post-smoothing iterations and can vary

as a function of k. If p = 1, we have a V-cycle multigrid algorithm. If p = 2, we have a W-cycle nmltigrid

algorithm. Other versions of multigrid algorithms without pre- or post-smoothing iterations can be analyzed

similarly. A variable V-cycle multigrid algorithm is that for which the number of smoothing re(k) increases

exponentially as k decreases (i.e., p = 1 and re(k) = 2J-k).

Based on the methodology developed in [3], two other very important ingredients in convergence analysis

of non-nested multigrid algorithms are the following assumptions.

A.I: (Regularity and approximation assumption) For some a E (0, 1] there exists C_, independent of

k, such that

( )°lak(v - IkPk-lv, v) t < C_ [IAkvll_ ak(v,v) _-_ (3.3.2)
- Ak

where Ak is the maximum eigenvalue of Ak.

A.2: There exists CR > 1, independent of k, such that

Ilull--_2< C_(Rk_,u), Vu _ 'v_,
Ak -

where Rk = (I - K_t(k)Ak I and Kk = I - RkAk and K_ is an adjoint of Kk with respect to ak(', ").

THEOaEM 3.4. Let Bk be defined by Algorithm 2.1. Suppose that A.1 and A.2 hold. Let p = 2 and

re(k) = m for all k. Then, for m sufficiently large, there is a constant M independent of m such that

with

lak((I - BkAk)u, u)] <_ 5Ak(u, u), Vu E Vk,

3I
6<

- M+m _"

REMARK 3.5. Theorem 3.1 shows that the convergence factor of the W-cycle multigrid algorithm does

not depend the number of levels if the multigrid method is convergent.

The following result concerns the variable V-cycle multigrid algorithm.

THEOREM 3.6. Let Bk be defined by Algorithm 2.1. Suppose that A.1 and A.2 hold. The number of

smoothings, re(k), increases as k decreases in such a way that

_om(k) < m(k - 1) < film(k)



with1 < /_o <_ /2,. Let p = 1. Then

rloak(u,u) <_ ak(B_.Aa.u,u) <_ *llak(u,u), Vu C t'_

M+ m ( k ) _
"_(k)° and 7_1< for some M > O.holds with _jo >_ ltf+rn(k)o -- ,n(k)"

REMARK 3.7. The converyenee of It-cycle multigrid algorithm is difficult to show. However, in many

numerical experiments, the V-cycle multigrid algorithm also converges if the number of smoothings m is

sufficiently large.

4. Numerical results. In this section, we consider two second-order elliptic problems and compare the

convergence behavior of multigrid algorithms with a covolume-based intergrid transfer operator and other

intergrid transfer operators on Pl-nonconforming multigrid algorithms.

Example 1. We consider the Laplace equation on the unit square

-Au = f, in f_,

Ou

flu + On = g' on OfL

(4.4.1)

where

01 at, y =0,1at x =0_1

and the coarsest primal triangulation of f_ is shown Figure 3(a).

In Figure 3, we show some primal triangulations which generated by the nested-mesh subdivision method.

We compare convergence rates of W-cycle multigrid methods with with intergrid transfer operator Ik, inter-

grid transfer operator Ik_, which was defined in [2], and intergrid transfer operator I_ _, which was defined in

[11] in Figure 4(a) and 4(b). We perform 3 Gauss-Seidel sweeps in Figure 4(a) and 4 damped Jacobi sweeps

with damping coefficient w = 0.6 in Figure 4(b). These figures show that the error reduction of I_ 1 is very

poor for the Robin or the Neumann boundary value problem.

We report the average error reduction of the W-cycle multigrid method with the covolume based intergrid

transfer operator with respect to number of grid levels in Table l(a) for the Gauss-Seidel smoother and Table

l(b) for the damped Jacobi smoother. For reference, we report that the average error reduction of the V-cycle

multigrid method Table l(c) and (d).

REMARK 4.1. Table I shows that the average error reduction of the W-cycle multigrid method does not

depend the number of grid levels but that of the V-cycle multigrid method does depend on the number of

levels. Also, Table 1 shows that the I'-cycle multigrid method converges for a sufficient number o] smoothing

steps.

In Figure 5, we compare convergence rates of the Preconditioned Conjugate Gradient method with

multigrid as a preconditioner. Also, we report in Table 2 the average error reduction of PCG with Pl

nonconforming multigrid algorithm as a preconditioner.

REMARK 4.2. Table 2 shows that the average error reduction of PCG with variable V-cycle multigrid as

a preeonditioner does not depend the number of grid levels, but a V-cycle multigrid algorithm does depend

on the number of levels.

Example 2. We consider the second-order partial differential equation with discontinuous coefficients
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FIG. 4. Comparison of error reduction of the W-cycle multigrid method. (a) Using 3 Gauss-Seidel

smoothing steps per level. (b) Using 4 Damped Jacobi smoothing steps with w = 0.6 per level



TABLE 1. Aver'age error reductions of multigrid method. (a) W-cycle multigrid with Gauss-Seidel smoother.

(b) W-cycle multigrid with Jaeobi smoother. (e) V-cycle multigrid with Gauss-Seidel smoother. (d) V-cycle

multigrid with .laeobi smoother. (* : not converge)

d\m 1 2 3 4 5 J\m

3 0.667 0.391 0.294 0.185 0.135 3

4 0.657 0.386 0.300 0.179 0.137 4

5 0.677 0.377 0.300 0.173 0.137 5

6 0.677 0.367 0.300 0.165 0.136 6

7 0.677 0.360 0.300 0.160 0.136 7

(a)

1 3 5 7 9

0.778 0.492 0.325 0.221 0.153

0.781 0.489 0.319 0.213 0.146

0.782 0.484 0.311 0.207 0.140

0.782 0.482 0.306 0.201 0.135

0.782 0.480 0.303 0.197 0.131

(b)

J\Tll

3

4

5

6

7

3 4 5 6 7

0.420 0.251 0.168 0.152 0.093

0.496 0.264 0.184 0.161 0.105

0.572 0.272 0.196 0.166 0.112

0.646 0.276 0.204 0.169 0.117

0.720 0.281 0.214 0.174 0.121

(c)

J\m 4 5 6 7 8

3 0.535 0.416 0.346 0.291 0.246

4 0.681 0.503 0.378 0.308 0.261

5 0.825 0.592 0.432 0.326 0.270

6 0.973 0.677 0.484 0.353 0.278

7 • 0.761 0.535 0.384 0.288

(d)

o
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o
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O_ .......
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-10
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iterations

(b)

FIG. 5. Comparison of error reduction of Preconditioned CG. (a) Using I Gauss-Seidel smoothing step per"

level. (b) Using 2 Damped Jaeobi smoothing steps with w = 0.6 per level



TABI,E 2. Average error reductions of Preconditioned CG. (a) Variable V-cycle multigrid with Gauss-Seidel

smoother. (b) Variable V-cycle multigrid with Jacobi smoother. (e) V-cycle multigrid with Gauss-Seidel

smoother. (d) |'-cycle multigrid with Jacobi smoother

J\m(J) 1 2 3 4

3 0.380 0.175 0.147 0.077

4 0.387 0.179 0.154 0.078

5 0.392 0.181 0.156 0.078

6 0.395 0.181 0.156 0.078

7 0.397 0.182 0.157 0.077

(a)

J\m 1 2 3 4

3 0.490 0.226 0.205 0.104

4 0.546 0.242 0.229 0.110

5 0.593 0.256 0.249 0.116

6 0.634 0.268 0.265 0.121

7 0.668 0.278 0.280 0.124

(c)

J\m(J) 1 2

3 0.510 0.358

4 0.526 0.362

5 0.535 0.366

6 0.540 0.367

7 0.542 0.368

(b)

J\m 1 2

3 0.563 0.433

4 0.615 0.475

5 {}.660 0.521

6 0.696 0.559

7 0.732 0.590

(d)

3 4

0.262 O.202

0.267 0.206

0.267 0.207

0.269 0.208

0.270 O.207

3 4

0.347 0.281

0.387 0.312

0.420 0.340

0.451 O.363

0.476 0.385

on the unit square

where

-27. AVu -- f, in 9t,

+ A
On = 9, on 0_,

(4.4.2)

g

A(x,y) = _10, ifl/3<x<2/3and 1/3<y<_2/3,

( 1, otherwise,

¢¢ is the same value as in Example 1 and the coarsest primal triangulation of 9t is shown Figure 6(a).

In Figure 6, we show some primal triangulations which generated by the nested-mesh subdivision method.

In Figure 7 and 8 and Table 3 and 4, we report the same numerical experiments applied to (4.4.2). In

these numerical experiments, the error reduction factor slightly increases in the W-cycle nmltigrid method

and PCG with variable V-cycle multigrid preconditioner, but is not rapidly increasing compared with V-

cycle multigrid and PCG with a V-cycle multigrid preconditioner. This result is related to the regularity of

the partial differential equation.

Example 3. As a nonlinear example, we consider a non-equilibrium radiation diffusion equation system,

which can be written as

with

OE

O-_- - V-(DrVE) = aa(T 4 - E), in 9t ,

OT
O_ - 27. (Dt27T) = -aa(T 4 - E), in _ ,

(4.4.3)

D,.(T,E) = 1 D,(T) = tcT_.
lVEl'3a,, + -f

lO
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FIG. 6. Discretization for example 2

Here, E represents the photon energy, T is the material temperature, and _ is the material conductivity.

In the non-equilibrium case, the nonlinear source terms on the right-hand-side are nonzero and govern

the transfer of energy between the radiation field and material temperature. Additional nonlinearities are

generated by the particular form of the diffusion coefficients, which are functions of the E and T variables. In

particular, the energy diffusion coefficient, Dr(T, E) contains the term IVEI which refers to the gradient of

E. This limiter term is an artificial means of ensuring physically meaningful energy propagation speeds (i.e.

no signal speeds faster than the speed of light) ([16, 13, 15]). The atomic number z is a material coefficient,

and while it may be highly variable, it is a function of position only (i.e. z = f(x, y) in two dimensions).

Equations (4.4.3) represent a system of coupled nonlinear partial differential equations which must be

discretized in space and time. The time derivatives are discretized as first-order backwards differences, with

lumping of the mass matrix, leading to an implicit scheme which requires the solution of a nonlinear problem

at each time step. This approach is first-order accurate in time, and is chosen merely for convenience, since

the principal objective is the study of the solution of the nonlinear system. Spatial discretization on two-

dimensional triangular meshes is achieved by a Pl- nonconforming finite element procedure, assuming linear

variations of E and T over a triangular element.

The test case chosen for this work is taken from [16, 15], we consider a unit square domain of two

dissimilar materials, where the outer region contains an atomic number of z = 1 and the inner region

(1/3 < x < 2/3, 1/3 < y < 2/3) contains an atomic number of z = 10. The top and bottom walls are

insulated, and inlet outlet boundaries are specified using mixed Robin boundary conditions, as shown in the

Figure 9. We use the same triangulation to the previous example 2.

11
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FIG. 7. Comparison of error reduction o/the W-cycle multigrid method. (a) Using 3 Gauss-Seidel

smoothing steps per level. (b) Using 4 Damped Jacobi smoothing steps with a_ = 0.6 per level

TABLE 3. Average error reductions of multigrid method. (a) W-cycle multigrid with Gauss-Seidel smoother.

(b) W-cycle multigrid with Jacobi smoother. (c) V-cycle multigrid with Gauss-Seidel smoother. (el) V-cycle

multigrid with 3acobi smoother. (*: not converge)

J\m
3

4

5

6

j\m
3

4

5

6

1 2 3 4 5 J\m

0.783 0.527 0.498 0.311 0.330 3

0.801 0.549 0.525 0.343 0.357 4

0.812 0.557 0.539 0.350 0.366 5

0.818 0.560 0.545 0.355 0.372 6

(a)

3 5 7 9 11 J\m

0.564 0.358 0.245 0.169 0.120

0.722 0.403 0.285 0.203 0.145

0.886 0.473 0.313 0.226 0.164

* 0.680 0.409 0.264 0.182

(c)

1 3 5 7 9

0.857 0.646 0.511 0.412 0.340

0.872 0.675 0.542 0.445 0.371

0.880 0.689 0.553 0.454 0.377

0.885 0.696 0.557 0.452 0.375

(b)

4 6 8 10 12

3 0.759 0.492 0.394 0.326 0.270

4 0.967 0.624 0.447 0.376 0.316

5 • 0.751 0.501 0.408 0.346

6 * 0.874 0.567 0.432 0.366

(d)
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FIG. 8. Comparison of error reduction o] Preconditioned CG. (a) Using i Gauss-Seidel smoothing step per

level. (b) Using 2 Damped Jaeobi smoothing steps with _ = 0.6 per level

TABLE 4. Average error reductions of Preconditioned CG. (a) Variable V-cycle multigrid with Gauss-Seidel

smoother. (b) Variable V-cycle multigt'id with Jacobi smoother. (c) V-cycle multigrid with Gauss-Seidel

smoother. (d) V-cycle multigrid with Jacobi smoother

J\m(J) 1 2 3 4

3 0.516 0.299 0.268 0.161

4 0.541 0.311 0.282 0.173

5 0.557 0.314 0.293 0.178

6 0.566 0.315 0.301 0.178

(a)

J\m 1 2 3 4

3 0.579 0.327 0.305 0.191

4 0.632 0.363 0.351 0.219

5 0.676 0.388 0.391 0.231

6 0.716 0.412 0.439 0.245

(c)

J\m(J)

3

4

5

6

J\m
3

4

5

6

1 2 3 4

0.614 0.465 0.372 0.309

0.647 0.499 0.405 0.343

0.674 0.527 0.429 0.357

0.690 0.541 0.442 0.371

(b)

2 3 4

0.500 0.413 0.351

0.558 0.469 0.408

0.606 0.515 0.449

0.643 0.554 0.486

(d)

1

0.641

0.699

0.742

0.777

13
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FIG. 10. Some numerical results of radiation transport problem

This problem is highly nonlinear and has been identified as one of the most time-consuming components

in large multiphysics simulation codes. To solve this nonlinear problem, we use Newton linearization method.

However the resulting linear problems are nonsymmetric, so we use Preconditioned GMRES(PGMRES) with

a nonconforming multigrid preconditioner (V-cycle or the variable V-cycle multigrid algorithm defined in

section 3) to solve the linear problem. In Figure 10, we illustrate a typical simulation result for this system.

14



We plot the contour of temperature T at time t = 2.0, 3.0.4.0, 5.0. These show that the solutions are rapidly

changing near the position where the two different materials meet.

To get the coarse grid operators, we need to get some approximations in the coarse finite element space

of solutions in the finest finite element space. When we use (I_) T as the fine-to-coarse intergrid transfer

operator, we cannot solve some coarse level problems because coarse level bilinear operator fails to be

defined (some values of temperature T are negative, as remark 3.2), or the coarse level problem is very hard

to solve by using iterative methods. But, if we use (Ik) T as fine-to-coarse intergrid transfer operator, the

preeonditioners work well.

In Figure 11, we compare the error reduction of PGMRES with V-cycle and variable V-cycle with

smoothing number 1 and 2 and Gauss-Seidel smoothing at time t = 2.0 with time step size dt = 0.001, 0.002,

0.005, 0.01. We measure linear residual error by preconditioned error and stop the linear PGMRES iteration

if the relative linear residual error is less than 10 .6 . For each time step, we stop the nonlinear iteration if

the nonlinear residual error is less than 5 x 10 -5.

The numerical results at time t = 2.0 show that there is no significant difference between V-cycle and

variable V-cycle preconditioner, but significant improvement in error reduction in solving the linear problem

when one increases the smoothing number.

We have a studied covotume-based intergrid transfer operators in a PI nonconforming multigrid. W_

found that multigrid methods with covolume-based intergrid transfer operators converge more slowly than

with a standard previous intergrid transfer operator. This result was expected because this operator is simple

and does not preserve as many high-order functions as the standard operator. However, we promote this

operator for preservation of positivity in solving nonlinear problems and for parallelization.

Acknowledgments. The author would like to thank D. E. Keyes of Old Dominion University for his

valuable advice in the preperation of this paper.
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